Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Transplant Direct ; 9(6): e1490, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37250484

RESUMO

Presensitized patients awaiting a kidney transplant have a lower graft survival and a longer waiting time because of the limited number of potential donors and the higher risk of antibody-mediated rejection (AMR), particularly in the early posttransplant period, because of preformed donor-specific antibodies binding major histocompatibility complex (MHC) molecules expressed by the graft endothelium followed by the activation of the complement. Advances in kidney preservation techniques allow the development of ex vivo treatment of transplants. We hypothesized that masking MHC ex vivo before transplantation could help to prevent early AMR in presensitized recipients. We evaluated a strategy of MHC I masking by an antibody during ex vivo organ perfusion in a porcine model of kidney transplantation in alloimmunized recipients. Methods: Through the in vitro calcein-release assay and flow cytometry, we evaluated the protective effect of a monoclonal anti-swine leukocyte antigen class I antibody (clone JM1E3) against alloreactive IgG complement-dependent cytotoxicity toward donor endothelial cells. Kidneys perfused ex vivo with JM1E3 during hypothermic machine perfusion were transplanted to alloimmunized recipients. Results: In vitro incubation of endothelial cells with JM1E3 decreased alloreactive IgG cytotoxicity (mean complement-dependent cytotoxicity index [% of control condition] with 1 µg/mL 74.13% ± 35.26 [calcein assay] and 66.88% ± 33.46 [cytometry]), with high interindividual variability. After transplantation, acute AMR occurred in all recipients on day 1, with signs of complement activation (C5b-9 staining) as soon as 1 h after transplantation, despite effective JM1E3 binding on graft endothelium. Conclusions: Despite a partial protective effect of swine leukocyte antigen I masking with JM1E3 in vitro, ex vivo perfusion of the kidney with JM1E3 before transplantation was not sufficient alone at preventing or delaying AMR in highly sensitized recipients.

2.
Front Immunol ; 12: 732530, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34925315

RESUMO

A numerous number of positive and negative signals via various molecules modulate T-cell activation. Within the various transmembrane proteins, SIRPγ is of interest since it is not expressed in rodents. SIRPγ interaction with CD47 is reevaluated in this study. Indeed, we show that the anti-SIRPγ mAb clone LSB2.20 previously used by others has not been appropriately characterized. We reveal that the anti-SIRPα clone KWAR23 is a Pan anti-SIRP mAb which efficiently blocks SIRPα and SIRPγ interactions with CD47. We show that SIRPγ expression on T cells varies with their differentiation and while being expressed on Tregs, is not implicated in their suppressive functions. SIRPγ spatial reorganization at the immune synapse is independent of its interaction with CD47. In vitro SIRPα-γ/CD47 blockade with KWAR23 impairs IFN-γ secretion by chronically activated T cells. In vivo in a xeno-GvHD model in NSG mice, the SIRPγ/CD47 blockade with the KWAR23 significantly delays the onset of the xeno-GvHD and deeply impairs human chimerism. In conclusion, we have shown that T-cell interaction with CD47 is of importance notably in chronic stimulation.


Assuntos
Antígenos de Diferenciação/metabolismo , Antígeno CD47/metabolismo , Doença Enxerto-Hospedeiro/imunologia , Ativação Linfocitária/efeitos dos fármacos , Muromonab-CD3/administração & dosagem , Receptores Imunológicos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Linfócitos T/imunologia , Animais , Antígenos de Diferenciação/genética , Antígenos de Diferenciação/imunologia , Doadores de Sangue , Antígeno CD47/genética , Modelos Animais de Doenças , Feminino , Técnicas de Introdução de Genes , Técnicas de Inativação de Genes , Voluntários Saudáveis , Xenoenxertos , Humanos , Células Jurkat , Ativação Linfocitária/genética , Masculino , Camundongos , Muromonab-CD3/imunologia , Receptores Imunológicos/genética , Receptores Imunológicos/imunologia , Transdução de Sinais/genética
3.
Cell Metab ; 30(6): 1075-1090.e8, 2019 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-31801055

RESUMO

Cell therapy is a promising strategy for treating patients suffering from autoimmune or inflammatory diseases or receiving a transplant. Based on our preclinical studies, we have generated human autologous tolerogenic dendritic cells (ATDCs), which are being tested in a first-in-man clinical trial in kidney transplant recipients. Here, we report that ATDCs represent a unique subset of monocyte-derived cells based on phenotypic, transcriptomic, and metabolic analyses. ATDCs are characterized by their suppression of T cell proliferation and their expansion of Tregs through secreted factors. ATDCs produce high levels of lactate that shape T cell responses toward tolerance. Indeed, T cells take up ATDC-secreted lactate, leading to a decrease of their glycolysis. In vivo, ATDCs promote elevated levels of circulating lactate and delay graft-versus-host disease by reducing T cell proliferative capacity. The suppression of T cell immunity through lactate production by ATDCs is a novel mechanism that distinguishes ATDCs from other cell-based immunotherapies.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Células Dendríticas/imunologia , Tolerância Imunológica , Terapia de Imunossupressão , Ácido Láctico/biossíntese , Animais , Doenças Autoimunes/terapia , Linfócitos T CD4-Positivos/citologia , Células Cultivadas , Células Dendríticas/metabolismo , Feminino , Humanos , Ativação Linfocitária , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Monócitos/imunologia
4.
Blood Adv ; 3(22): 3522-3538, 2019 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-31730699

RESUMO

Polyclonal CD8+CD45RClow/- Tregs are potent regulatory cells able to control solid organ transplantation rejection and even induce tolerance. However, donor major histocompatibility complex (MHC)-specific Tregs are more potent than polyclonal Tregs in suppressing T-cell responses and preventing acute as well as chronic rejection in rodent models. The difficulty of identifying disease-relevant antigens able to stimulate Tregs has reduced the possibility of obtaining antigen-specific Tregs. To bypass this requirement and gain the advantage of antigen specificity, and thus improve the therapeutic potential of CD8+ Tregs, we stably introduced a chimeric antigen receptor (CAR) derived from a HLA-A*02 antigen-specific antibody (A2-CAR) in human CD8+ Tregs and developed a clinically compatible protocol of transduction and expansion. We demonstrated that A2-CAR CD8+ Tregs were not phenotypically altered by the process, were specifically activated, and did not exhibit cytotoxic activity toward HLA-A*02+ kidney endothelial cells (ECs). We showed that A2-CAR CD8+ Tregs were more potent suppressors of immune responses induced by HLA-A*02 mismatch than control-CAR CD8+ Tregs, both in vitro and in vivo, in models of human skin graft rejection and graft-versus-host disease (GVHD) in NOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJ (NSG) mice. We showed that integrity of human skin graft was preserved with A2-CAR CD8+ Tregs at least 100 days in vivo after administration, and that interaction between the A2-CAR CD8+ Tregs and HLA-A*02+ kidney ECs resulted in a fine-tuned and protolerogenic activation of the ECs without cytotoxicity. Together, our results demonstrated the relevance of the CAR engineering approach to develop antigen-specific CAR-CD8+ Tregs for clinical trials in transplantation, and potentially in other diseases.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Doença Enxerto-Hospedeiro/terapia , Antígenos HLA/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Antígenos Quiméricos/metabolismo , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Animais , Biomarcadores , Comunicação Celular , Modelos Animais de Doenças , Expressão Gênica , Engenharia Genética , Rejeição de Enxerto/genética , Rejeição de Enxerto/imunologia , Doença Enxerto-Hospedeiro/etiologia , Antígenos HLA/imunologia , Antígeno HLA-A2/genética , Antígeno HLA-A2/imunologia , Humanos , Tolerância Imunológica , Imunofenotipagem , Camundongos , Camundongos Knockout , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos Quiméricos/genética , Transdução Genética
5.
J Clin Invest ; 129(5): 1910-1925, 2019 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-30939120

RESUMO

It remains unknown what causes inflammatory bowel disease (IBD), including signaling networks perpetuating chronic gastrointestinal inflammation in Crohn's disease (CD) and ulcerative colitis (UC), in humans. According to an analysis of up to 500 patients with IBD and 100 controls, we report that key transcripts of the IL-7 receptor (IL-7R) pathway are accumulated in inflamed colon tissues of severe CD and UC patients not responding to either immunosuppressive/corticosteroid, anti-TNF, or anti-α4ß7 therapies. High expression of both IL7R and IL-7R signaling signature in the colon before treatment is strongly associated with nonresponsiveness to anti-TNF therapy. While in mice IL-7 is known to play a role in systemic inflammation, we found that in humans IL-7 also controlled α4ß7 integrin expression and imprinted gut-homing specificity on T cells. IL-7R blockade reduced human T cell homing to the gut and colonic inflammation in vivo in humanized mouse models, and altered effector T cells in colon explants from UC patients grown ex vivo. Our findings show that failure of current treatments for CD and UC is strongly associated with an overexpressed IL-7R signaling pathway and point to IL-7R as a relevant therapeutic target and potential biomarker to fill an unmet need in clinical IBD detection and treatment.


Assuntos
Colite Ulcerativa/metabolismo , Colo/metabolismo , Doença de Crohn/metabolismo , Receptores de Interleucina-7/metabolismo , Linfócitos T/citologia , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Adolescente , Adulto , Idoso , Animais , Colo/patologia , Citocinas/metabolismo , Endoscopia , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Doença Enxerto-Hospedeiro/metabolismo , Humanos , Inflamação , Integrinas/metabolismo , Mucosa Intestinal/metabolismo , Leucócitos Mononucleares/citologia , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Pessoa de Meia-Idade , Transdução de Sinais , Adulto Jovem
6.
Nat Commun ; 9(1): 4483, 2018 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-30367166

RESUMO

Targeting the expansion of pathogenic memory immune cells is a promising therapeutic strategy to prevent chronic autoimmune attacks. Here we investigate the therapeutic efficacy and mechanism of new anti-human IL-7Rα monoclonal antibodies (mAb) in non-human primates and show that, depending on the target epitope, a single injection of antagonistic anti-IL-7Rα mAbs induces a long-term control of skin inflammation despite repeated antigen challenges in presensitized monkeys. No modification in T cell numbers, phenotype, function or metabolism is observed in the peripheral blood or in response to polyclonal stimulation ex vivo. However, long-term in vivo hyporesponsiveness is associated with a significant decrease in the frequency of antigen-specific T cells producing IFN-γ upon antigen restimulation ex vivo. These findings indicate that chronic antigen-specific memory T cell responses can be controlled by anti-IL-7Rα mAbs, promoting and maintaining remission in T-cell mediated chronic inflammatory diseases.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Memória Imunológica/efeitos dos fármacos , Inflamação/tratamento farmacológico , Receptores de Interleucina-7/antagonistas & inibidores , Linfócitos T/imunologia , Animais , Doença Crônica , Deleção Clonal/imunologia , Modelos Animais de Doenças , Humanos , Memória Imunológica/imunologia , Inflamação/imunologia , Interferon gama/imunologia , Papio , Receptores de Interleucina-7/agonistas , Receptores de Interleucina-7/imunologia , Transdução de Sinais/efeitos dos fármacos , Pele/imunologia , Pele/patologia
7.
Transplantation ; 102(8): 1271-1278, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29688994

RESUMO

BACKGROUND: Immunodeficient mice are invaluable tools to analyze the long-term effects of potentially immunogenic molecules in the absence of adaptive immune responses. Nevertheless, there are models and experimental situations that would beneficiate of larger immunodeficient recipients. Rats are ideally suited to perform experiments in which larger size is needed and are still a small animal model suitable for rodent facilities. Additionally, rats reproduce certain human diseases better than mice, such as ankylosing spondylitis and Duchenne disease, and these disease models would greatly benefit from immunodeficient rats to test different immunogenic treatments. METHODS: We describe the generation of Il2rg-deficient rats and their crossing with previously described Rag1-deficient rats to generate double-mutant RRG animals. RESULTS: As compared with Rag1-deficient rats, Il2rg-deficient rats were more immunodeficient because they partially lacked not only T and B cells but also NK cells. RRG animals showed a more profound immunossuppressed phenotype because they displayed undetectable levels of T, B, and NK cells. Similarly, all immunoglobulin isotypes in sera were decreased in Rag1- or Il2rg-deficient rats and undetectable in Rats Rag1 and Il2rg (RRG) animals. Rag1- or Il2rg-deficient rats rejected allogeneic skin transplants and human tumors, whereas animals not only accepted allogeneic rat skin but also xenogeneic human tumors, skin, and hepatocytes. Immune humanization of RRG animals was unsuccessful. CONCLUSIONS: Thus, immunodeficient RRG animals are useful recipients for long-term studies in which immune responses could be an obstacle, including tissue humanization of different tissues.


Assuntos
Deleção de Genes , Proteínas de Homeodomínio/genética , Subunidade gama Comum de Receptores de Interleucina/genética , Animais , Animais Geneticamente Modificados , Cruzamentos Genéticos , Modelos Animais de Doenças , Éxons , Feminino , Genótipo , Hepatócitos/citologia , Humanos , Sistema Imunitário , Fígado/imunologia , Masculino , Mutação , Ratos , Ratos Sprague-Dawley , Transplante de Pele , Transplante Heterólogo , Transplantes
8.
Front Immunol ; 8: 2014, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29445370

RESUMO

Both CD4+ and CD8+ Tregs play a critical role in the control of immune responses and immune tolerance; however, our understanding of CD8+ Tregs is limited while they are particularly promising for therapeutic application. We report here existence of highly suppressive human CD8+CD45RClow/- Tregs expressing Foxp3 and producing IFNγ, IL-10, IL-34, and TGFß to mediate their suppressive activity. We demonstrate that total CD8+CD45RClow/- Tregs can be efficiently expanded in the presence of anti-CD3/28 mAbs, high-dose IL-2 and IL-15 and that such expanded Tregs efficiently delay GVHD and human skin transplantation rejection in immune humanized mice. Robustly expanded CD8+ Tregs displayed a specific gene signature, upregulated cytokines and expansion in the presence of rapamycin greatly improved proliferation and suppression. We show that CD8+CD45RClow/- Tregs are equivalent to canonical CD4+CD25highCD127low/- Tregs for suppression of allogeneic immune responses in vitro. Altogether, our results open new perspectives to tolerogenic strategies in human solid organ transplantation and GVHD.

9.
J Am Soc Nephrol ; 27(12): 3577-3588, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27160407

RESUMO

Belatacept is a biologic that targets CD80/86 and prevents its interaction with CD28 and its alternative ligand, cytotoxic T lymphocyte antigen 4 (CTLA-4). Clinical experience in kidney transplantation has revealed a high incidence of rejection with belatacept, especially with intensive regimens, suggesting that blocking CTLA-4 is deleterious. We performed a head to head assessment of FR104 (n=5), a selective pegylated Fab' antibody fragment antagonist of CD28 that does not block the CTLA-4 pathway, and belatacept (n=5) in kidney allotransplantation in baboons. The biologics were supplemented with an initial 1-month treatment with low-dose tacrolimus. In cases of acute rejection, animals also received steroids. In the belatacept group, four of five recipients developed severe, steroid-resistant acute cellular rejection, whereas FR104-treated animals did not. Assessment of regulatory T cell-specific demethylated region methylation status in 1-month biopsy samples revealed a nonsignificant trend for higher regulatory T cell frequencies in FR104-treated animals. Transcriptional analysis did not reveal significant differences in Th17 cytokines but did reveal higher levels of IL-21, the main cytokine secreted by CD4 T follicular helper (Tfh) cells, in belatacept-treated animals. In vitro, FR104 controlled the proliferative response of human preexisting Tfh cells more efficiently than belatacept. In mice, selective CD28 blockade also controlled Tfh memory cell responses to KLH stimulation more efficiently than CD80/86 blockade. Our data reveal that selective CD28 blockade and belatacept exert different effects on mechanisms of renal allograft rejection, particularly at the level of Tfh cell stimulation.


Assuntos
Abatacepte/farmacologia , Anticorpos/efeitos dos fármacos , Anticorpos/imunologia , Antígenos CD28/imunologia , Rejeição de Enxerto/imunologia , Imunossupressores/farmacologia , Animais , Camundongos , Papio
10.
Glia ; 63(12): 2298-312, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26212105

RESUMO

Among the costimulatory factors widely studied in the immune system is the CD28/cytotoxic T-lymphocyte antigen-4 (CTLA4)-CD80/CD86 pathway, which critically controls the nature and duration of the T-cell response. In the brain, up-regulated expression of CD80/CD86 during inflammation has consistently been reported in microglia. However, the role of CD80/CD86 molecules has mainly been studied in a context of microglia-T cell interactions in pathological conditions, while the function of CD80/CD86 in the regulation of intrinsic brain cells remains largely unknown. In this study, we used a transgenic pig line in which neurons express releasable CTLA4-Ig, a synthetic molecule mimicking CTLA4 and binding to CD80/CD86. The effects of CTLA4-Ig on brain cells were analyzed after intracerebral transplantation of CTLA4-Ig-expressing neurons or wild-type neurons as control. This model provided in vivo evidence that CTLA4-Ig stimulated axonal outgrowth, in correlation with a shift of the nearby microglia from a compact to a ramified morphology. In a culture system, we found that the CTLA4-Ig-induced morphological change of microglia was mediated through CD86, but not CD80. This was accompanied by microglial up-regulated expression of the anti-inflammatory molecule Arginase 1 and the neurotrophic factor BDNF, in an astrocyte-dependent manner through the purinergic P2Y1 receptor pathway. Our study identifies for the first time CD86 as a key player in the modulation of microglia phenotype and suggests that CTLA4-Ig-derived compounds might represent new tools to manipulate CNS microglia.


Assuntos
Abatacepte/metabolismo , Axônios/fisiologia , Antígeno B7-1/metabolismo , Antígeno B7-2/metabolismo , Microglia/fisiologia , Abatacepte/genética , Animais , Animais Geneticamente Modificados , Astrócitos/citologia , Astrócitos/fisiologia , Transplante de Tecido Encefálico , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Crescimento Celular , Células Cultivadas , Técnicas de Cocultura , Corpo Estriado/citologia , Corpo Estriado/fisiologia , Corpo Estriado/cirurgia , Humanos , Masculino , Microglia/citologia , RNA Mensageiro/metabolismo , Ratos Endogâmicos Lew , Ratos Sprague-Dawley , Suínos
11.
J Cell Mol Med ; 19(1): 124-34, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25310920

RESUMO

Foetal pig neuroblasts are interesting candidates as a cell source for transplantation, but xenotransplantation in the brain requires the development of adapted immunosuppressive treatments. As systemic administration of high doses of cyclosporine A has side effects and does not protect xenotransplants forever, we focused our work on local control of the host immune responses. We studied the advantage of cotransplanting syngenic mesenchymal stem cells (MSC) with porcine neuroblasts (pNb) in immunocompetent rat striata. Two groups of animals were transplanted, either with pNb alone or with both MSC and pNb. At day 63, no porcine neurons were detected in the striata that received only pNb, while four of six rats transplanted with both pNb and MSC exhibited healthy porcine neurons. Interestingly, 50% of the cotransplanted rats displayed healthy grafts with pNF70+ and TH+ neurons at 120 days post-transplantation. qPCR analyses revealed a general dwindling of pro- and anti-inflammatory cytokines in the striata that received the cotransplants. Motor recovery was also observed following the transplantation of pNb and MSC in a rat model of Parkinson's disease. Taken together, the present data indicate that the immunosuppressive properties of MSC are of great interest for the long-term survival of xenogeneic neurons in the brain.


Assuntos
Encéfalo/imunologia , Imunidade , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Transplante Heterólogo , Animais , Antígeno CD11b/metabolismo , Sobrevivência Celular , Quimiocinas/genética , Quimiocinas/metabolismo , Proteína Glial Fibrilar Ácida/genética , Proteína Glial Fibrilar Ácida/metabolismo , Sobrevivência de Enxerto/imunologia , Imunidade Celular , Imunocompetência , Masculino , Mesencéfalo/citologia , Dados de Sequência Molecular , Atividade Motora , Neurônios/citologia , Neurônios/metabolismo , Neurônios/transplante , Oxidopamina , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos Endogâmicos Lew , Recuperação de Função Fisiológica , Sus scrofa
12.
Cell Transplant ; 23(11): 1407-23, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-23879897

RESUMO

Induced pluripotent stem cells (iPSCs) offer certain advantages over embryonic stem cells in cell replacement therapy for a variety of neurological disorders. However, reliable procedures, whereby transplanted iPSCs can survive and differentiate into functional neurons, without forming tumors, have yet to be devised. Currently, retroviral or lentiviral reprogramming methods are often used to reprogram somatic cells. Although the use of these viruses has proven to be effective, formation of tumors often results following in vivo transplantation, possibly due to the integration of the reprogramming genes. The goal of the current study was to develop a new approach, using an adenovirus for reprogramming cells, characterize the iPSCs in vitro, and test their safety, survivability, and ability to differentiate into region-appropriate neurons following transplantation into the rat brain. To this end, iPSCs were derived from bone marrow-derived mesenchymal stem cells and tail-tip fibroblasts using a single cassette lentivirus or a combination of adenoviruses. The reprogramming efficiency and levels of pluripotency were compared using immunocytochemistry, flow cytometry, and real-time polymerase chain reaction. Our data indicate that adenovirus-generated iPSCs from tail-tip fibroblasts are as efficient as the method we used for lentiviral reprogramming. All generated iPSCs were also capable of differentiating into neuronal-like cells in vitro. To test the in vivo survivability and the ability to differentiate into region-specific neurons in the absence of tumor formation, 400,000 of the iPSCs derived from tail-tip fibroblasts that were transfected with the adenovirus pair were transplanted into the striatum of adult, immune-competent rats. We observed that these iPSCs produced region-specific neuronal phenotypes, in the absence of tumor formation, at 90 days posttransplantation. These results suggest that adenovirus-generated iPSCs may provide a safe and viable means for neuronal replacement therapies.


Assuntos
Adenoviridae/fisiologia , Reprogramação Celular/fisiologia , Corpo Estriado/cirurgia , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/virologia , Transplante de Células-Tronco/métodos , Animais , Diferenciação Celular/fisiologia , Sobrevivência Celular/fisiologia , Corpo Estriado/citologia , Masculino , Ratos , Ratos Sprague-Dawley , Transfecção
13.
Stem Cells ; 30(10): 2342-53, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22888011

RESUMO

Besides their therapeutic benefit as cell source, neural stem/progenitor cells (NSPCs) exhibit immunosuppressive properties of great interest for modulating immune response in the central nervous system. To decipher the mechanisms of NSPC-mediated immunosuppression, activated T cells were exposed to NSPCs isolated from fetal rat brains. Analyses revealed that NSPCs inhibited T-cell proliferation and interferon-gamma production in a dose-dependent manner. A higher proportion of helper T cells (CD4+ T cells) was found in the presence of NSPCs, but analyses of FoxP3 population indicated that T-cell suppression was not secondary to an induction of suppressive regulatory T cells (FoxP3+ CD4+ CD25+). Conversely, induction of the high affinity interleukin-2 (IL-2) receptor (CD25) and the inability of IL-2 to rescue T-cell proliferation suggest that NSPCs display immunosuppressive activity without affecting T-cell activation. Cultures in Transwell chambers or addition of NSPC-conditioned medium to activated T cells indicated that part of the suppressive activity was not contact dependent. We therefore searched for soluble factors that mediate NSPC immunosuppression. We found that NSPCs express several immunosuppressive molecules, but the ability of these cells to inhibit T-cell proliferation was only counteracted by heme oxygenase (HO) inhibitors in association or not with nitric oxide synthase inhibitors. Taken together, our findings highlight a dynamic crosstalk between NSPCs and T lymphocytes and provide the first evidence of an implication of HO-1 in mediating the immunosuppressive effects of the NSPCs.


Assuntos
Encéfalo/metabolismo , Heme Oxigenase-1/metabolismo , Imunidade Inata , Células-Tronco Neurais/metabolismo , Linfócitos T Reguladores/metabolismo , Animais , Encéfalo/citologia , Encéfalo/imunologia , Comunicação Celular/imunologia , Proliferação de Células , Técnicas de Cocultura , Embrião de Mamíferos , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/imunologia , Expressão Gênica/imunologia , Heme Oxigenase-1/antagonistas & inibidores , Heme Oxigenase-1/genética , Interferon gama/imunologia , Ativação Linfocitária/efeitos dos fármacos , Células-Tronco Neurais/citologia , Células-Tronco Neurais/imunologia , Óxido Nítrico Sintase/antagonistas & inibidores , Óxido Nítrico Sintase/genética , Óxido Nítrico Sintase/metabolismo , Cultura Primária de Células , Ratos , Ratos Sprague-Dawley , Receptores de Interleucina-2/genética , Receptores de Interleucina-2/imunologia , Linfócitos T Reguladores/citologia , Linfócitos T Reguladores/imunologia
14.
Methods Mol Biol ; 885: 233-43, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22565999

RESUMO

Intracerebral cell transplantation offers the possibility of replacing lost neurons in case of neurodegenerative disorders. To date, the best functional recovery for Parkinson's patients has been obtained using neuroblasts derived from human foetal mesencephalon, but the ethical and practical problems relative to the use of human foetal tissue lead to consideration of alternative sources of cells. In this regard, porcine neuroblasts appear as a valuable source as these cells are available in large quantity and programmed to extend long neurites as human neurons. However, the potential use of pig neural cells in the clinical setting depends on efficient and safe immunosuppression. So, most experimental work in this domain aims at developing immunosuppressive treatments specifically adapted to the central nervous system. In such perspective, transplantation of porcine mesencephalic neuroblasts into the striatum of the adult rat brain is of great interest. Indeed, rejection of intracerebral xenografts has been quite well described in rats, and graft survival can be easily monitored in a rat model of Parkinson's disease. In the present chapter, we describe the methods for isolating neuroblasts from foetal porcine mesencephalon as well as the technique of intracerebral transplantation in adult immunocompetent rats.


Assuntos
Mesencéfalo/citologia , Neurônios/transplante , Transplante Heterólogo/métodos , Animais , Corpo Estriado/cirurgia , Modelos Animais de Doenças , Feto , Sobrevivência de Enxerto , Humanos , Imuno-Histoquímica , Doença de Parkinson/terapia , Perfusão , Ratos , Suínos
15.
J Mol Neurosci ; 46(2): 431-41, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21809042

RESUMO

Immune signaling and neuroinflammatory mediators have recently emerged as influential variables that regulate neural precursor/stem cell (NPC) behavior and function. In this study, we investigated whether the signaling adaptor protein CD3ζ, a transmembrane protein involved in T cell differentiation and function and recently shown to regulate neuronal development in the central nervous system (CNS), may have a role in NPC differentiation. We analyzed the expression profile of CD3ζ in embryonic rat brain during neurogenic periods and in neurosphere-derived neural cells, and we investigated the action of CD3ζ on cell differentiation. We found that CD3ζ expression coincided with neuronal commitment, but its forced expression in NPCs prevented the production of neurons and oligodendrocytes, but not astroglial cells. This blockade of neuronal differentiation was operated through an ITAM-independent mechanism, but required the Asp36 of the CD3ζ transmembrane domain involved in membrane receptor interaction. Together, our findings show that ectopic CD3ζ expression in NPCs impaired their normal cell-fate specification and suggest that variations of CD3ζ expression in the developing CNS might result in neurodevelopmental anomalies.


Assuntos
Complexo CD3/fisiologia , Linhagem da Célula , Regulação da Expressão Gênica no Desenvolvimento , Proteínas do Tecido Nervoso/fisiologia , Células-Tronco Neurais/enzimologia , Neurogênese/fisiologia , Substituição de Aminoácidos , Animais , Complexo CD3/biossíntese , Complexo CD3/química , Complexo CD3/genética , Sobrevivência Celular , Células Cultivadas/enzimologia , Indução Enzimática , Feminino , Idade Gestacional , Hipocampo/citologia , Hipocampo/embriologia , Microscopia de Fluorescência , Mutagênese Sítio-Dirigida , Proteínas do Tecido Nervoso/biossíntese , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/genética , Células-Tronco Neurais/patologia , Neurônios/citologia , Neurônios/enzimologia , Bulbo Olfatório/embriologia , Bulbo Olfatório/enzimologia , Gravidez , Ratos , Ratos Sprague-Dawley , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/fisiologia , Transfecção
16.
J Neurochem ; 119(4): 708-22, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21895656

RESUMO

Recent studies have highlighted the key role of the immune protein CD3ζ in the maturation of neuronal circuits in the CNS. Yet, the upstream signals that might recruit and activate CD3ζ in neurons are still unknown. In this study, we show that CD3ζ functions early in neuronal development and we identify ephrinA1-dependent EphA4 receptor activation as an upstream regulator of CD3ζ. When newly born neurons are still spherical, before neurite extension, we found a transient CD3ζ aggregation at the cell periphery matching the initiation site of the future neurite. This accumulation of CD3ζ correlated with a stimulatory effect on filopodia extension via a Rho-GEF Vav2 pathway and a repression of neurite outgrowth. Conversely, cultured neurons lacking CD3ζ isolated from CD3ζ(-/-) mice showed a decreased number of filopodia and an enhanced neurite number. Stimulation with ephrinA1 induces the translocation of both CD3ζ and its activated effector molecules, ZAP-70/Syk tyrosine kinases, to EphA4 receptor clusters. EphrinA1-induced growth cone collapse was abrogated in CD3ζ(-/-) neurons and was markedly reduced by ZAP-70/Syk inhibition. Moreover, ephrinA1-induced ZAP-70/Syk activation was inhibited in CD3ζ(-/-) neurons. Altogether, our data suggest that CD3ζ mediates the ZAP-70/Syk kinase activation triggered by ephrinA-activated pathway to regulate early neuronal morphogenesis.


Assuntos
Complexo CD3/metabolismo , Efrinas/metabolismo , Neuritos/fisiologia , Neurônios/fisiologia , Transdução de Sinais/fisiologia , Proteína-Tirosina Quinase ZAP-70/metabolismo , Animais , Animais Recém-Nascidos , Encéfalo/citologia , Complexo CD3/genética , Células COS , Células Cultivadas , Chlorocebus aethiops , Embrião de Mamíferos , Efrinas/genética , Efrinas/farmacologia , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Imunoprecipitação/métodos , Camundongos , Camundongos Knockout , Células-Tronco Neurais , Neurônios/citologia , Neurônios/efeitos dos fármacos , Pseudópodes/efeitos dos fármacos , Pseudópodes/fisiologia , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Transfecção/métodos , Tubulina (Proteína)/metabolismo , Proteína-Tirosina Quinase ZAP-70/genética
17.
Exp Neurol ; 230(1): 35-47, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20470774

RESUMO

Intracerebral xenotransplantation of porcine fetal neuroblasts (pNB) is considered as an alternative to human neuroblasts for the treatment of neurodegenerative diseases. However, pNB are systematically rejected, even in an immunoprivileged site such as the brain. Within this context, neural stem/precursor cells (NSPC), which were suggested as exhibiting low immunogenicity, appeared as a useful source of xenogeneic cells. To determine the advantage of using porcine NSPC (pNSPC) in xenotransplantation, pNB and pNSPC were grafted into the striatum of rats without immunosuppression. At day 63, all the pNB were rejected while 40% of the rats transplanted with pNSPC exhibited large and healthy grafts with numerous pNF70-positive cells. The absence of inflammation at day 63 and the occasional presence of T cells in pNSPC grafts evoked a weak host immune response which might be partly due to the immunosuppressive properties of the transplanted cells. T cell proliferation assays confirmed such a hypothesis by revealing an inhibitory effect of pNSPC on T cells through a soluble factor. In addition to their immunosuppressive effect, in contrast to pNB, very few pNSPC differentiated into tyrosine hydroxylase-positive neurons but the cells triggered an intense innervation of the striatum by rat dopaminergic fibers coming from the substantia nigra. Further experiments will be required to optimize the use of pNSPC in regenerative medicine but here we show that their immunomodulatory and trophic activities might be of great interest for restorative strategies. This article is part of a Special Issue entitled "Interaction between repair, disease, & inflammation."


Assuntos
Transplante de Células/métodos , Células-Tronco Neurais/imunologia , Células-Tronco Neurais/fisiologia , Síndromes Neurotóxicas/cirurgia , Animais , Proliferação de Células , Citocinas/metabolismo , Modelos Animais de Doenças , Embrião de Mamíferos , Citometria de Fluxo/métodos , Inflamação/metabolismo , Masculino , Mesencéfalo/citologia , Mesencéfalo/embriologia , Proteínas do Tecido Nervoso/metabolismo , Síndromes Neurotóxicas/patologia , Oxidopamina/toxicidade , Ratos , Ratos Endogâmicos Lew , Suínos , Linfócitos T/fisiologia , Fatores de Tempo , Transplante Heterólogo/métodos , Tirosina 3-Mono-Oxigenase/metabolismo
18.
Transplantation ; 89(7): 816-23, 2010 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-20216486

RESUMO

BACKGROUND: Cell therapy in the brain is limited by the requirement of high doses of immunosuppressors that have harmful side effects, and often, it cannot prevent the ultimate rejection of the transplanted cells. Alternative treatments that replace or enable a reduction in the doses of usual immunosuppressors have to be found. In this regard, minocycline shows potential as therapeutic agent. This drug crosses the blood-brain barrier, has good safety records, and exhibits strong antiinflammatory effects. METHODS: To study the impact of minocycline on the survival of intracerebral transplant, 400,000 porcine fetal neurons were transplanted into the striatum of rats treated daily with minocycline until sacrifice. Graft survival and immunologic reaction were evaluated by immunohistochemistry. RESULTS: In the control groups, all the grafts were rejected at day 63, whereas healthy grafts exhibiting tyrosine hydroxylase neurons were observed in 40% of the treated rats. The low immunoreactivity for ED1 and R73 in treated rats when compared with the control groups suggests that minocycline promotes long-term survival of neuronal xenograft by inhibiting microglial activation and T-cell recruitment. CONCLUSIONS: Our present data provide the first evidence of an effect of minocycline on the host immune response after neuronal transplantation into the brain. This observation raises new perspectives concerning the use of minocycline and provides basis for the development of safe and efficient immunosuppressive protocols for intracerebral transplantation.


Assuntos
Gânglios da Base/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Rejeição de Enxerto/prevenção & controle , Sobrevivência de Enxerto/efeitos dos fármacos , Imunossupressores/farmacologia , Microglia/efeitos dos fármacos , Minociclina/farmacologia , Neurônios/efeitos dos fármacos , Linfócitos T/efeitos dos fármacos , Administração Oral , Animais , Gânglios da Base/imunologia , Gânglios da Base/cirurgia , Antígeno CD11b/metabolismo , Sobrevivência Celular , Rejeição de Enxerto/imunologia , Imuno-Histoquímica , Imunossupressores/administração & dosagem , Proteínas de Filamentos Intermediários/metabolismo , Masculino , Mesencéfalo/embriologia , Mesencéfalo/transplante , Microglia/imunologia , Minociclina/administração & dosagem , Neurônios/imunologia , Neurônios/metabolismo , Neurônios/transplante , Ratos , Ratos Endogâmicos Lew , Receptores de Antígenos de Linfócitos T alfa-beta/metabolismo , Sus scrofa , Linfócitos T/imunologia , Fatores de Tempo , Transplante Heterólogo , Tirosina 3-Mono-Oxigenase/metabolismo
19.
Exp Neurol ; 202(1): 76-84, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16824519

RESUMO

Following transplantation into the rat brain, porcine neuroblasts differentiate and integrate host tissue, but due to their xenogeneic nature, these cells are generally rejected within several weeks. This rejection is accompanied by infiltration of the graft by macrophages and alphabetaT lymphocytes, but so far nothing is known about the potential role of dendritic cells (DCs) in this process. DCs are professional antigen presenting cells that have the unique ability to prime naive T cells, thereby initiating an antigen-directed immune response. Here, we provide evidence for DC recruitment following the transplantation of pig mesencephalic neural cells into the striatum of LEW.1A rats, as indicated by the high number of OX62+ cells in the rejecting graft and the absence of V65 staining. DCs were found as early as 3 and 8 days postimplantation together with ED1+ and OX42+ cells. This early recruitment, which is probably due to the surgical procedure, might be a critical step in the rejection process, enabling DCs to be loaded with xenoantigens. The number of intracerebral DCs subsequently decreased, being barely detectable in older non-infiltrated xenografts. However, DCs re-appeared as they were observed in grafts infiltrated by macrophages and T cells, a phenomenon that usually precedes graft rejection. Interestingly, we observed a tight correlation between the number of DCs and that of R7.3+ T cells infiltrating the graft. In addition, DCs were often found in close proximity to alphabetaT cells and most expressed MHCII. Taken together, these findings give credence to a role for infiltrating DCs in the mediation of T cell responses to intracerebral xenografting.


Assuntos
Encéfalo/citologia , Células Dendríticas/fisiologia , Transplante de Tecido Fetal , Transplante Heterólogo , Animais , Antígenos de Diferenciação/metabolismo , Contagem de Células/métodos , Ectodisplasinas/metabolismo , Embrião de Mamíferos , Rejeição de Enxerto , Imuno-Histoquímica/métodos , Masculino , Mesencéfalo/citologia , Mesencéfalo/embriologia , Neurônios/transplante , Ratos , Ratos Endogâmicos Lew , Suínos , Fatores de Tempo
20.
Cell Transplant ; 14(8): 527-36, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16355564

RESUMO

Xenografts of fetal porcine mesencephalic cells implanted into the rat striatum are generally rejected within several weeks. The fetal donor mesencephalon predominantly consists of neurons, but also contains microglial and endothelial cells, which are more immunogenic. In the present work, we investigated the occurrence of donor endothelial cells in grafts of porcine mesencephalic cells implanted into the rat striatum. Pig endothelial cells were monitored by immunochemical methods, using a monoclonal antibody (mAb) that recognizes a peptidic epitope of the porcine beta1 integrin, and isolectin IB4, for the staining of the Galalpha1,3Gal epitope. The analysis also involved the detection of the pig hyaluronate receptor CD44, and the cell adhesion molecule CD31. The anti-beta1 integrin mAb revealed endothelial-like cells in grafts of porcine mesencephalic cells as soon as 1 week after implantation. A similar staining pattern was obtained with the IB4 lectin. Unlike aortic endothelial cells, these pig brain-derived endothelial-like cells were not recognized by the anti-CD44 antibody. They also failed to express the CD31 adhesion molecule, a fact which suggests that they remained poorly mature, even in grafts maintained during 45 days in immunosuppressed rats. Interestingly, a strong expression of beta1 integrin immunoreactivity was noticed in a large proportion (80%) of the cells freshly dissociated from the fetal pig mesencephalic tissue. The immunoreactivity decreased progressively after transplantation of the cells into the rat brain. This observation suggests that dissociated neuroblasts are capable of a temporary expression of beta1 integrin. This molecule is known to participate in the process of cell sorting and migration in the developing brain. Hence, its expression could be the hallmark of a rescue mechanism triggered by the disruption of the cell/matrix interactions during the dissociation of the fetal mesencephalon. This disruption might account for part of the dramatic cell death process that occurs during the manipulation of the donor tissue.


Assuntos
Antígenos Heterófilos/imunologia , Integrina beta1/imunologia , Mesencéfalo/citologia , Animais , Anticorpos Monoclonais/metabolismo , Antígenos Heterófilos/metabolismo , Astrócitos/imunologia , Astrócitos/metabolismo , Transplante de Tecido Encefálico/imunologia , Células Cultivadas , Células Endoteliais/metabolismo , Células Endoteliais/transplante , Transplante de Tecido Fetal/imunologia , Receptores de Hialuronatos/metabolismo , Imuno-Histoquímica , Integrina beta1/metabolismo , Mesencéfalo/imunologia , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Ratos , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...